
Multi-Process Service
Release r575

NVIDIA Corporation

May 15, 2025

InnerLinkColorHTML000000

Contents

i

ii

Multi-Process Service, Release r575

Multi-Process Service

TheMulti-Process Service (MPS) is an alternative, binary-compatible implementation of the CUDA Ap-
plication Programming Interface (API). The MPS runtime architecture is designed to transparently en-
able co-operative multi-process CUDA applications, typically MPI jobs, to utilize Hyper-Q capabilities
on the latest NVIDIA (Kepler-based) Tesla and Quadro GPUs.

Contents 1

Multi-Process Service, Release r575

2 Contents

Chapter 1. At a Glance

1.1. MPS

TheMulti-Process Service (MPS) is an alternative, binary-compatible implementation of the CUDA Ap-
plication Programming Interface (API). The MPS runtime architecture is designed to transparently en-
able cooperative multi-process CUDA applications, typically MPI jobs, to utilize Hyper-Q capabilities on
the latest NVIDIA (Kepler and later) GPUs. Hyper-Q allows CUDA kernels to be processed concurrently
on the same GPU; this can benefit performance when the GPU compute capacity is underutilized by a
single application process.

1.2. Volta MPS

The Volta architecture introduced new MPS capabilities. Compared to MPS on pre-Volta GPUs, Volta
MPS provides a few key improvements:

▶ Volta MPS clients submit work directly to the GPU without passing through the MPS server.

▶ Each Volta MPS client owns its own GPU address space instead of sharing GPU address space
with all other MPS clients.

▶ Volta MPS supports limited execution resource provisioning for Quality of Service (QoS).

This document will introduce the new capabilities and note the differences between Volta MPS and
MPS on pre-Volta GPUs. Running MPS on Volta will automatically enable the new capabilities.

1.3. Intended Audience

This document is a comprehensive guide to MPS capabilities and usage. It is intended to be read
by application developers and users who will be running GPU calculations and intend to achieve the
greatest level of execution performance. It is also intended to be read by system administrators who
will be enabling the MPS capability in a user-friendly way, typically on multi-node clusters.

3

Multi-Process Service, Release r575

1.4. Organization of This Document

The order of the presentation is as follows:

▶ Introduction andConcepts – describes whyMPS is needed and how it enables Hyper-Q formulti-
process applications.

▶ When to UseMPS – describes what factors to consider when choosing to run an application with
or choosing to deploy MPS for your users.

▶ Architecture – describes the client-server architecture of MPS in detail and how it multiplexes
clients onto the GPU.

▶ Appendices – Reference information for the tools and interfaces used by the MPS system and
guidance for common use-cases.

4 Chapter 1. At a Glance

Chapter 2. Prerequisites

Portions of this document assume that you are already familiar with:

▶ the structure of CUDA applications and how they utilize theGPU via the CUDARuntime andCUDA
Driver software libraries

▶ concepts of modern operating systems, such as how processes and threads are scheduled and
how inter-process communication typically works

▶ the Linux command-line shell environment

▶ configuring and running MPI programs via a command-line interface

5

Multi-Process Service, Release r575

6 Chapter 2. Prerequisites

Chapter 3. Concepts

3.1. Why MPS is Needed

To balance workloads between CPU and GPU tasks, MPI processes are often allocated individual CPU
cores in amulti-core CPUmachine to provide CPU-core parallelization of potential Amdahl bottlenecks.
As a result, the amount of work each individual MPI process is assignedmay underutilize the GPUwhen
theMPI process is accelerated using CUDA kernels. While eachMPI processmay end up running faster,
the GPU is being used inefficiently. The Multi-Process Service takes advantage of the inter-MPI rank
parallelism, increasing the overall GPU utilization.

3.2. What MPS Is

MPS is a binary-compatible client-server runtime implementation of the CUDA API which consists of
several components:

▶ Control DaemonProcess – The control daemon is responsible for starting and stopping the server,
as well as coordinating connections between clients and servers.

▶ Client Runtime – The MPS client runtime is built into the CUDA Driver library and may be used
transparently by any CUDA application.

▶ Server Process – The server is the clients’ shared connection to theGPUandprovides concurrency
between clients.

7

Multi-Process Service, Release r575

8 Chapter 3. Concepts

Chapter 4. See Also

▶ Manpage for nvidia-cuda-mps-control (1)

▶ Manpage for nvidia-smi (1)

9

Multi-Process Service, Release r575

10 Chapter 4. See Also

Chapter 5. When to Use MPS

5.1. The Benefits of MPS

5.1.1. GPU Utilization

A single processmay not utilize all the compute andmemory-bandwidth capacity available on the GPU.
MPS allows kernel andmemcopy operations from different processes to overlap on the GPU, achieving
higher utilization and shorter running times.

5.1.2. Reduced On-GPU Context Storage

Without MPS, each CUDA processes using a GPU allocates separate storage and scheduling resources
on the GPU. In contrast, the MPS server allocates one copy of GPU storage and scheduling resources
shared by all its clients. Volta MPS supports increased isolation between MPS clients, so the resource
reduction is to a much lesser degree.

5.1.3. Reduced GPU Context Switching

Without MPS, when processes share the GPU their scheduling resources must be swapped on and off
the GPU. The MPS server shares one set of scheduling resources between all of its clients, eliminating
the overhead of swapping when the GPU is scheduling between those clients.

5.2. Identifying Candidate Applications

MPS is useful when each application process does not generate enough work to saturate the GPU.
Multiple processes can be run per node using MPS to enable more concurrency. Applications like this
are identified by having a small number of blocks-per-grid.

Further, if the application shows a low GPU occupancy because of a small number of threads-per-grid,
performance improvements may be achievable with MPS.Using fewer blocks-per-grid in the kernel
invocation and more threads-per-block to increase the occupancy per block is recommended. MPS
allows the leftover GPU capacity to be occupied with CUDA kernels running from other processes.

11

Multi-Process Service, Release r575

These cases arise in strong-scaling situations, where the compute capacity (node, CPU core and/or
GPU count) is increased while the problem size is held fixed. Though the total amount of computation
work stays the same, the work per process decreases and may underutilize the available compute
capacity while the application is running. With MPS, the GPU will allow kernel launches from different
processes to run concurrently and remove an unnecessary point of serialization from the computation.

5.3. Considerations

5.3.1. System Considerations

5.3.1.1 Limitations

▶ MPS is only supported on the Linux and QNX operating systems. The MPS server will fail to start
when launched on an operating system other than Linux.

▶ Only Volta MPS is supported on Tegra platforms.

▶ MPS requires a GPUwith compute capability version 3.5 or higher. TheMPS serverwill fail to start
if one of the GPUs visible after applying CUDA_VISIBLE_DEVICES is not of compute capability
3.5 or higher.

▶ The Unified Virtual Addressing (UVA) feature of CUDA must be available, which is the default for
any 64-bit CUDA program running on a GPU with compute capability version 2.0 or higher. If UVA
is unavailable, the MPS server will fail to start.

▶ The amount of page-locked host memory that can be allocated by MPS clients is limited by the
size of the tmpfs filesystem (∕dev∕shm for Linux and ∕dev∕shmem for QNX).

▶ Exclusive-mode restrictions are applied to theMPS server, notMPS clients. GPU computemodes
are not supported on Tegra platforms.

▶ Only one user on a system may have an active MPS server.

▶ TheMPS control daemon will queueMPS server activation requests from separate users, leading
to serialized exclusive access of the GPU between users regardless of GPU exclusivity settings.

▶ All MPS client behavior will be attributed to the MPS server process by system monitoring and
accounting tools (for example, nvidia-smi, NVML API).

5.3.1.2 GPU Compute Modes

Three Compute Modes are supported via settings accessible in nvidia-smi:

▶ PROHIBITED – the GPU is not available for compute applications.

▶ EXCLUSIVE_PROCESS—the GPU is assigned to only one process at a time, and individual process
threads may submit work to the GPU concurrently.

▶ DEFAULT – multiple processes can use the GPU simultaneously. Individual threads of each pro-
cess may submit work to the GPU simultaneously.

Using MPS effectively causes EXCLUSIVE_PROCESS mode to behave like DEFAULT mode for all MPS
clients. MPS will always allow multiple clients to use the GPU via the MPS server.

12 Chapter 5. When to Use MPS

Multi-Process Service, Release r575

When using MPS it is recommended to use EXCLUSIVE_PROCESS mode to ensure that only a single
MPS server is using the GPU, which provides additional insurance that the MPS server is the single
point of arbitration between all CUDA processes for that GPU.

5.3.2. Application Considerations

▶ The NVIDIA Codec SDK: https://developer.nvidia.com/nvidia-video-codec-sdk is not supported
under MPS on pre-Volta MPS clients.

▶ Only 64-bit applications are supported. The MPS server will fail to start if the CUDA application
is not 64-bit. The MPS client will fail CUDA initialization.

▶ If an application uses the CUDA driver API, then it must use headers from CUDA 4.0 or later
(that is, it must not have been built by setting CUDA_FORCE_API_VERSION to an earlier version).
Context creation in the client will fail if the context version is older than 4.0.

▶ Dynamic parallelism is not supported. CUDA module load will fail if the module uses dynamic
parallelism features.

▶ MPS server only supports clients running with the same UID as the server. The client application
will fail to initialize if the server is not running with the same UID. Volta MPS may be launched
in -multiuser-server mode to allow clients under different UIDs to connect to a single MPS
server launched under the root user while dropping isolation between users. Refer to Server for
details regarding -multiuser-servermode.

▶ Stream callbacks are not supported on pre-Volta MPS clients. Calling any stream callback APIs
will return an error.

▶ CUDA graphs with host nodes are not supported under MPS on pre-Volta MPS clients.

▶ The amount of page-locked host memory that pre-Volta MPS client applications can allocate
is limited by the size of the tmpfs filesystem (∕dev∕shm for Linux and ∕dev∕shmem for QNX).
Attempting to allocate more page-locked memory than the allowed size using any of relevant
CUDA APIs will fail.

▶ Terminating an MPS client without synchronizing with all outstanding GPU work (via Ctrl-C / pro-
gram exception such as segfault / signals, etc.) can leave the MPS server and other MPS clients
in an undefined state, which may result in hangs, unexpected failures, or corruptions.

▶ CUDA IPC between CUDA contexts which are created by processes running as MPS clients and
CUDA contexts which are created by processes not running as MPS clients is supported under
Volta MPS. CUDA IPC is not supported on Tegra platforms.

▶ Launching cooperative group kernel with MPS is not supported on Tegra platforms.

5.3.3. Memory Protection and Error Containment

MPS is only recommended for running cooperative processes effectively acting as a single application,
such as multiple ranks of the sameMPI job, such that the severity of the following memory protection
and error containment limitations is acceptable.

5.3. Considerations 13

https://developer.nvidia.com/nvidia-video-codec-sdk

Multi-Process Service, Release r575

5.3.3.1 Memory Protection

Volta MPS client processes have fully isolated GPU address spaces.

Pre-Volta MPS client processes allocate memory from different partitions of the same GPU virtual
address space. As a result:

▶ Anout-of-rangewrite in aCUDAKernel canmodify theCUDA-accessiblememory state of another
process and will not trigger an error.

▶ An out-of-range read in a CUDAKernel can access CUDA-accessiblememorymodified by another
process, and will not trigger an error, leading to undefined behavior.

This pre-Volta MPS behavior is constrained to memory accesses from pointers within CUDA Kernels.
AnyCUDAAPI restrictsMPS clients fromaccessing any resources outside of thatMPSClient’smemory
partition. For example, it is not possible to overwrite anotherMPS client’smemory using the cudaMem-
cpy() API.

5.3.3.2 Error Containment

Volta MPS supports limited error containment:

▶ A fatal GPU fault generated by a Volta MPS client process will be contained within the subset of
GPUs shared between all clients with the fatal fault-causing GPU.

▶ A fatal GPU fault generated by a Volta MPS client process will be reported to all the clients run-
ning on the subset of GPUs in which the fatal fault is contained, without indicating which client
generated the error. Note that it is the responsibility of the affected clients to exit after being
informed of the fatal GPU fault.

▶ Clients running on other GPUs remain unaffected by the fatal fault and will run as normal until
completion.

▶ Once a fatal fault is observed, the MPS server will wait for all the clients associated with the
affected GPUs to exit, prohibiting new client connecting to those GPUs from joining. The status
of the MPS server changes from ACTIVE to FAULT. When all the existing clients associated with
the affected GPUs have exited, the MPS server will recreate the GPU contexts on the affected
GPUs and resume processing client requests to those GPUs. The MPS server status changes
back to ACTIVE, indicating that it is able to process new clients.

For example, if your system has devices 0, 1, and 2, and if there are four clients client A, client B, client
C, and client D connected to the MPS server: client A runs on device 0, client B runs on device 0 and
1, client C runs on device 1, client D runs on device 2. If client A triggers a fatal GPU fault:

▶ Since device 0 and device 1 share a comment client, client B, the fatal GPU fault is contained
within device 0 and 1.

▶ The fatal GPU fault will be reported to all the clients running on device 0 and 1, that is, client A,
client B, and client C.

▶ Client D running on device 2 remain unaffected by the fatal fault and continue to run as normal.

▶ The MPS server will wait for client A, client B, and client C to exit and reject any new client re-
quests will be rejected with error CUDA_ERROR_MPS_SERVER_NOT_READYwhile the server status
is FAULT. After client A, client B, and client C have exited, the server recreates the GPU contexts
on device 0 and device 1 and then resumes accepting client requests on all devices. The server
status becomes ACTIVE again.

Information about the fatal GPU fault containment will be logged, including:

14 Chapter 5. When to Use MPS

Multi-Process Service, Release r575

▶ If the fatal GPU fault is a fatal memory fault, the PID of the client which triggered the fatal GPU
memory fault.

▶ The device IDs of the devices which are affected by this fatal GPU fault.

▶ The PIDs of the clients which are affected by this fatal GPU fault. The status of each affected
client becomes INACTIVE and the status of the MPS server becomes FAULT.

▶ The messages indicating the successful recreation of the affected devices after all the affected
clients have exited.

Pre-Volta MPS client processes share on-GPU scheduling and error reporting resources. As a result:

▶ A GPU fault generated by any client will be reported to all clients, without indicating which client
generated the error.

▶ A fatal GPU fault triggered by one client will terminate the MPS server and the GPU activity of all
clients.

CUDA API errors generated on the CPU in the CUDA Runtime or CUDA Driver are delivered only to the
calling client.

5.3.4. MPS on Multi-GPU Systems

The MPS server supports using multiple GPUs. On systems with more than one GPU, you can use
CUDA_VISIBLE_DEVICES to enumerate theGPUs youwould like to use. Refer to EnvironmentVariables
for more details.

On systems with a mix of Volta / pre-Volta GPUs, if the MPS server is set to enumerate any Volta GPU,
it will discard all pre-Volta GPUs. In other words, the MPS server will either operate only on the Volta
GPUs and expose Volta capabilities or operate only on pre-Volta GPUs.

5.3.5. Performance

5.3.5.1 Client-Server Connection Limits

The pre-Volta MPS Server supports up to 16 client CUDA contexts per-device concurrently. Volta MPS
server supports 48 client CUDA contexts per-device. These contexts may be distributed over multiple
processes. If the connection limit is exceeded, the CUDA application will fail to create a CUDA Context
and return an API error from cuCtxCreate() or the first CUDA Runtime API call that triggers context
creation. Failed connection attempts will be logged by the MPS server.

5.3.5.2 Volta MPS Execution Resource Provisioning

Volta MPS supports limited execution resource provisioning. The client contexts can be set to only use
a portion of the available threads. The provisioning capability is commonly used to achieve two goals:

▶ Reduce clientmemory footprint: Since eachMPS client process has fully isolated address space,
each client context allocates independent context storage and scheduling resources. Those re-
sources scale with the amount of threads available to the client. By default, each MPS client has
all available threads useable. As MPS is usually used with multiple processes running simultane-
ously, making all threads accessible to every client is often unnecessary, and therefore wasteful

5.3. Considerations 15

Multi-Process Service, Release r575

to allocate full context storage. Reducing the number of threads available will effectively reduce
the context storage allocation size.

▶ Improve QoS: The provisioningmechanism can be used as a classic QoSmechanism to limit avail-
able compute bandwidth. Reducing the portion of available threads will also concentrate the
work submitted by a client to a set of SMs, reducing destructive interference with other clients’
submitted work.

Setting the limit does not reserve dedicated resources for any MPS client context. It simply limits how
much resources can be used by a client context. Kernels launched from different MPS client contexts
may execute on the same SM, depending on load-balancing.

By default, each client is provisioned to have access to all available threads. Thiswill allow themaximum
degree of scheduling freedom, but at a cost of higher memory footprint due to wasted execution
resource allocation. The memory usage of each client process can be queried through nvidia-smi.

The provisioning limit can be set via a few different mechanisms for different effects. These mech-
anisms are categorized into two mechanisms: active thread percentage and programmatic interface.
In particular, partitioning via active thread percentage are categorized into two strategies: uniform
partitioning and non-uniform partitioning.

The limit constrained by the uniform active thread percentage is configured for a client processwhen it
starts and cannot be changed for the client process afterwards. The executed limit is reflected through
device attribute cudaDevAttrMultiProcessorCount whose value remains unchanged throughout
the client process.

▶ The MPS control utility provides 2 sets of commands to set/query the limit of all future MPS
clients. Refer to nvidia-cuda-mps-control for more details.

▶ Alternatively, the limit for all future MPS clients can be set by setting the environment variable
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE for the MPS control process. Refer to MPS Control
Daemon Level for more details.

▶ The limit can be further constrained for new clients by solely setting the environment variable
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE for a client process. Refer to Client Process Level for
more details.

The limit constrained by the non-uniform active thread percentage is configured for every client CUDA
context and can be changed throughout the client process. The executed limit is reflected through
device attribute cudaDevAttrMultiProcessorCount whose value returns the portion of available
threads that can be used by the client CUDA context current to the calling thread.

▶ The limit constrained by the uniform partitioning mechanisms can be further
constrained for new client CUDA contexts by setting the environment variable
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE in conjunction with the environment variable
CUDA_MPS_ENABLE_PER_CTX_DEVICE_MULTIPROCESSOR_PARTITIONING. Refer to Client
CUDAContext Level andCUDA_MPS_ENABLE_PER_CTX_DEVICE_MULTIPROCESSOR_PARTITIONING
for more details.

The limit constrained by the programmatic partitioning is configured for a client CUDA context cre-
ated via cuCtxCreate_v3() with the execution affinity CUexecAffinityParam which specifies the
number of SMs that the context is limited to use. The executed limit of the context can be queried
through cuCtxGetExecAffinity(). Refer to Best Practice for SM Partitioning for more details.

A common provisioning strategy is to uniformly partition the available threads equally to each MPS
client processes (i.e., set active thread percentage to 100% / n, for n expected MPS client processes).
This strategy will allocate close to the minimum amount of execution resources, but it could restrict
performance for clients that could occasionally make use of idle resources.

A more optimal strategy is to uniformly partition the portion by half of the number of expected clients

16 Chapter 5. When to Use MPS

Multi-Process Service, Release r575

(i.e., set active thread percentage to 100% / 0.5n) to give the load balancer more freedom to overlap
execution between clients when there are idle resources.

The near optimal provision strategy is to non-uniformly partition the available threads based on the
workloads of each MPS clients (i.e., set active thread percentage to 30% for client 1 and set active
thread percentage to 70 % client 2 if the ratio of the client 1 workload and the client2 workload is 30%:
70%). This strategy will concentrate the work submitted by different clients to disjoint sets of the SMs
and effectively minimize the interference between work submissions by different clients.

Themost optimal provision strategy is to precisely limit the number of SMs to use for eachMPS clients
knowing the execution resource requirements of each client (i.e., 24 SMs for client1 and 60 SMs for
client 2 on a device with 84 SMs). This strategy provides finer grained and more flexible control over
the set of SMs the work will be running on than the active thread percentage.

If the active thread percentage is used for partitioning, the limit will be internally rounded down to the
nearest hardware supported thread count limit. If the programmatic interface is used for partitioning,
the limit will be internally rounded up to the nearest hardware supported SM count limit.

5.3.5.3 Threads and Linux Scheduling

On pre-Volta GPUs, launching more MPS clients than there are available logical cores on your machine
will incur increased launch latency and will generally slow down client-server communication due to
how the threads get scheduled by the Linux CFS (Completely Fair Scheduler). For setups where mul-
tiple GPUs are used with an MPS control daemon and server started per GPU, we recommend pinning
each MPS server to a distinct core. This can be accomplished by using the utility taskset, which
allows binding a running program to multiple cores or launching a new one on them. To accomplish
this with MPS, launch the control daemon bound to a specific core, for example, taskset -c 0
nvidia-cuda-mps-control -d. The process affinity will be inherited by the MPS server when it
starts up.

5.3.5.4 Volta MPS Device Memory Limit

On Volta MPS, users can enforce clients to adhere to allocate device memory up to a preset limit. This
mechanism provides a facility to fractionalize GPUmemory acrossMPS clients that run on the specific
GPU, which enables scheduling and deployment systems to make decisions based on the memory us-
age for the clients. If a client attempts to allocate memory beyond the preset limit, the cuda memory
allocation calls will return out of memory error. The memory limit specific will also account for CUDA
internal device allocations which will help users make scheduling decisions for optimal GPU utilization.
This can be accomplished through a hierarchy of control mechanisms for users to limit the pinned
device memory on MPS clients. The default limit setting would enforce a device memory limit on all
the MPS clients of all future MPS Servers spawned. The per server limit setting allows finer grained
control on the memory resource limit whereby users have the option to set memory limit selectively
using the server PID and thus all clients of the server. Additionally, MPS clients can further constrain
the memory limit setting from the server by using the CUDA_MPS_PINNED_DEVICE_MEM_LIMIT envi-
ronment variable.

5.3. Considerations 17

Multi-Process Service, Release r575

5.3.6. Interaction with Tools

5.3.6.1 Debugging and CUDA-GDB

On Volta MPS, GPU coredumps can be generated and debugged using CUDA-GDB. Refer to CUDA-GDB
documentation <https://docs.nvidia.com/cuda/cuda-gdb/index.html>`__ for usage instructions.

Under certain conditions applications invoked from within CUDA-GDB (or any CUDA-compatible de-
bugger, such as Allinea DDT) may be automatically run without using MPS, even when MPS automatic
provisioning is active. To take advantage of this automatic fallback, no other MPS client applications
may be running at the time. This enables debugging of CUDA applications without modifying the MPS
configuration for the system.

Here’s how it works:

1. CUDA-GDB attempts to run an application and recognizes that it will become an MPS client.

2. The application running under CUDA-GDB blocks in cuInit() and waits for all of the active MPS
client processes to exit, if any are running.

3. Once all client processes have terminated, the MPS server will allow CUDA-GDB and the applica-
tion being debugged to continue.

4. Any new client processes attempt to connect to the MPS daemon will be provisioned a server
normally.

5.3.6.2 memcheck

Thememcheck tool is supported onMPS. Refer to thememcheckdocumentation for usage instructions.

5.3.6.3 Profiling

CUDA profiling tools (such as nvprof and Nvidia Visual Profiler) and CUPTI-based profilers are sup-
ported under MPS.

Refer to Migrating to Nsight Tools from Visual Profiler and nvprof for more details.

5.3.7. Client Early Termination

Terminating an MPS client via CTRL-C or signals is not supported and will lead to undefined behavior.
The user must guarantee that the MPS client is idle, by calling either cudaDeviceSynchronize or
cudaStreamSynchronize on all streams, before the MPS client can be terminated. Early termination
of a MPS client without synchronizing all outstanding GPU work may leave the MPS server in an un-
defined state and result in unexpected failures, corruptions, or hangs; as a result, the affected MPS
server and all its clients must be restarted.

On Volta MPS, user can instruct the MPS server to terminate the CUDA contexts of an MPS client
process, regardless of whether the CUDA contexts are idle or not, by using the control command ter-
minate_client <server PID> <client PID>. This mechanism enables user to terminate the
CUDA contexts of a given MPS client process, even when the CUDA contexts are non-idle, without
affecting the MPS server or its other MPS clients. The control command terminate_client sends
a request to the MPS server which terminates the CUDA contexts of the target MPS client process
on behalf of the user and returns after the MPS server has completed the request. The return value is

18 Chapter 5. When to Use MPS

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#memcheck-tool
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#migrating-to-nsight-tools-from-visual-profiler-and-nvprof

Multi-Process Service, Release r575

CUDA_SUCCESS if the CUDA contexts of the target MPS client process have been successfully termi-
nated; otherwise, a CUDA error describing the failure state. When the MPS server starts handling the
request, each MPS client context running in the target MPS client process becomes INACTIVE; the
status changeswill be logged by theMPS server. Upon successful completion of the client termination,
the targetMPS client processwill observe a sticky error CUDA_ERROR_MPS_CLIENT_TERMINATED, and
it becomes safe to kill the target MPS client process with signals such as SIGKILL without affecting
the rest of the MPS server and its MPS clients. Note that the MPS server is not responsible for killing
the targetMPS client process after the sticky error is set because the targetMPS client processmight
want to:

▶ Perform clean-up of its GPU or CPU state. This may include a device reset. Continue remaining
CPU work.

▶ Continue remaining CPU work.

If the user wants to terminate the GPU work of a MPS client process that is running inside a PID
namespace different from the MPS control’s PID namespace, such as an MPS client process inside a
container, the usermust use the PID of the targetMPS client process translated into theMPS control’s
PID namespace. For example, the PID of an MPS client process inside the container is 6, and the PID
of this MPS client process in the host PID namespace is 1024; the user must use 1024 to terminate
the GPU work of the target MPS client process.

The common workflow for terminating the client application nbody:

Use the control command ps to get the status of the current active MPS clients.

$ echo "ps" | nvidia-cuda-mps-control

PID ID SERVER DEVICE NAMESPACE COMMAND

9741 0 6472 GPU-cb1213a3-d6a4-be7f 4026531836 .∕nbody

9743 0 6472 GPU-cb1213a3-d6a4-be7f 4026531836 .∕matrixMul

Terminate using the PID of nbody in the host PID namespace as reported by ps:

$ echo "terminate_client 6472 9741" | nvidia-cuda-mps-control

#wait until terminate_client to return

#upon successful termination 0 is returned

0

Now it is safe to kill nbody:

$ kill -9 9741

MPS client termination is not supported on Tegra platforms.

5.3. Considerations 19

Multi-Process Service, Release r575

5.3.8. Client Priority Level Control

Users are normally only able to control the GPU priority level of their kernels by using the cudaS-
treamCreateWithPriority() API while the program is being written. On Volta MPS, the user can
use the control command set_default_client_priority <Priority Level> tomap the stream
priorities of a given client to a different range of internal CUDA priorities. Changes to this setting do
not take effect until the next client connection to the server is opened. The user can also set the
CUDA_MPS_CLIENT_PRIORITY environment variable before starting the control daemon or any given
client process to set this value.

In this release, the allowed priority level values are 0 (normal) and 1 (below normal). Lower numbers
map to higher priorities to match the behavior of the Linux kernel scheduler.

Note

CUDA priority levels are not guarantees of execution order–they are only a performance hint to the
CUDA Driver.

For example:

▶ Process A is launched at Normal priority and only uses the default CUDA Stream, which has the
lowest priority of 0.

▶ Process B is launched at Below Normal priority and uses streams with custom Stream priority
values, such as -3.

Without this feature, the streams fromProcess Bwould be executed first by the CUDAdriver. However,
with the Client Priority Level feature, the streams from Process A will take precedence.

20 Chapter 5. When to Use MPS

Chapter 6. Architecture

6.1. Background

CUDA is a general purpose parallel computing platform and programming model that leverages the
parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a more
efficient way than on a CPU.

A CUDA program starts by creating a CUDA context, either explicitly using the driver API or implic-
itly using the runtime API, for a specific GPU. The context encapsulates all the hardware resources
necessary for the program to be able to manage memory and launch work on that GPU.

Launching work on the GPU typically involves copying data over to previously allocated regions in GPU
memory, running a CUDA kernel that operates on that data, and then copying the results back from
GPU memory into system memory. A CUDA kernel consists of a hierarchy of thread groups that exe-
cute in parallel on the GPU’s compute engine.

All work on the GPU launched using CUDA is launched either explicitly into a CUDA stream, or implicitly
using a default stream. A stream is a software abstraction that represents a sequence of commands,
which may be a mix of kernels, copies, and other commands, that execute in order. Work launched in
two different streams can execute simultaneously, allowing for coarse grained parallelism.

CUDA streams are aliased onto one or more ‘work queues’ on the GPU by the driver. Work queues are
hardware resources that represent an in-order sequence of the subset of commands in a stream to
be executed by a specific engine on the GPU, such as the kernel executions or memory copies. GPUs
with Hyper-Q have a concurrent scheduler to schedule work from work queues belonging to a single
CUDA context. Work launched to the compute engine fromwork queues belonging to the same CUDA
context can execute concurrently on the GPU.

The GPU also has a time sliced scheduler to schedule work from work queues belonging to different
CUDA contexts. Work launched to the compute engine fromwork queues belonging to different CUDA
contexts cannot execute concurrently. This can cause underutilization of theGPU’s compute resources
if work launched from a single CUDA context is not sufficient to use up all resource available to it.

Additionally, within the software layer, to receive asynchronous notifications from the OS and perform
asynchronous CPU work on behalf of the application the CUDA driver may create internal threads: an
upcall handler thread and potentially a user callback executor thread.

21

Multi-Process Service, Release r575

6.2. Client-server Architecture

This diagram shows a likely schedule of CUDA kernels when running an MPI application consisting of
multiple OS processes without MPS. Note that while the CUDA kernels from within each MPI process
may be scheduled concurrently, each MPI process is assigned a serially scheduled time-slice on the
whole GPU.

When using pre-VoltaMPS, the servermanages the hardware resources associatedwith a single CUDA
context. The CUDA contexts belonging to MPS clients funnel their work through the MPS server.
This allows the client CUDA contexts to bypass the hardware limitations associated with time sliced
scheduling, and permit their CUDA kernels execute simultaneously.

Volta provides new hardware capabilities to reduce the types of hardware resources the MPS server
mustmanaged. A client CUDA contextmanagesmost of the hardware resources on Volta, and submits
work to the hardware directly. The VoltaMPS servermediates the remaining shared resources required
to ensure simultaneous scheduling of work submitted by individual clients, and stays out of the critical
execution path.

The communication between the MPS client and the MPS server is entirely encapsulated within the
CUDA driver behind the CUDA API. As a result, MPS is transparent to the MPI program.

MPS clients CUDA contexts retain their upcall handler thread and any asynchronous executor threads.
TheMPS server creates an additional upcall handler thread and creates aworker thread for each client.

22 Chapter 6. Architecture

Multi-Process Service, Release r575

6.2. Client-server Architecture 23

Multi-Process Service, Release r575

6.3. Provisioning Sequence

6.3.1. Server

The MPS control daemon is responsible for the startup and shutdown of MPS servers. The control
daemon allows at most one MPS server to be active at a time. When an MPS client connects to the
control daemon, the daemon launches an MPS server if there is no server active. The MPS server is
launched with the same user id as that of the MPS client.

If there is an MPS server already active and the user ID of the server and client match, then the con-
trol daemon allows the client to proceed to connect to the server. If there is an MPS server already
active, but the server and client were launched with different user IDs, the control daemon requests
the existing server to shutdown once all its clients have disconnected. Once the existing server has
shutdown, the control daemon launches a new server with the same user ID as that of the new user’s
client process. This is shown in the figure above where user Bob starts client C’ before a server is
available. Only once user Alice’s clients exit is a server created for user Bob and client C’.

The MPS control daemon does not shutdown the active server if there are no pending client requests.
This means that the active MPS server process will persist even if all active clients exit. The active
server is shutdown when either a new MPS client, launched with a different user id than the active
MPS server, connects to the control daemon or when the work launched by the clients has caused a
fault. This is shown in the example above, where the control daemon issues a server exit request to
Alice’s server only once user Bob starts client C, even though all of Alice’s clients have exited.

On Volta MPS, the restriction of one Linux user per MPS server may berelaxed to avoid reprovisioning
the MPS server on each new user request. Under this mode, clients from all Linux users will appear
as clients from the root user and connect to the root MPS server. It is important to make sure that
isolation between different users (including the root user) can be safely disregarded before enabling
this mode. Clients from all users will share the same MPS log files. The same error containment
rules (refer to Memory Protection and Error Containment) also apply in this mode across clients from
all users. For example, a fatal fault from one client may bring down a different user’s client that shares
any GPU with the faulting client. To allow multiple Linux users share one MPS server, start the control
daemon under superuser with the -multiuser-server option. This option is not supported on Tegra
platforms.

An MPS server may be in one of the following states: INITIALIZING, ACTIVE or FAULT. The INI-
TIALIZING state indicates that the MPS server is busy initializing and the MPS control will hold the
new client requests in its queue. The ACTIVE state indicates the MPS server is able to process new
client requests. The FAULT state indicates that the MPS server is blocked on a fatal fault caused by a
client. Any new client requests will be rejected with error CUDA_ERROR_MPS_SERVER_NOT_READY.

A newly launched MPS server will be in the INITIALIZING state first. After successful initialization,
theMPS server goes into the ACTIVE state. When a client encounters a fatal fault, the MPS server will
transition from ACTIVE to FAULT. On pre-Volta MPS, the MPS server shuts down after encountering
a fatal fault. On Volta MPS, the MPS server becomes ACTIVE again after all faulting clients have
disconnected.

The control daemon executable also supports an interactive mode where a user with sufficient per-
missions can issue commands, for example to see the current list of servers and clients or startup and
shutdown servers manually.

24 Chapter 6. Architecture

Multi-Process Service, Release r575

Figure 1: System-wide provisioning with multiple users.

6.3. Provisioning Sequence 25

Multi-Process Service, Release r575

6.3.2. Client Attach/Detach

When CUDA is first initialized in a program, the CUDA driver attempts to connect to the MPS control
daemon. If the connection attempt fails, the program continues to run as it normally would without
MPS. If however, the connection attempt succeeds, the MPS control daemon proceeds to ensure that
an MPS server, launched with same user ID as that of the connecting client, is active before returning
to the client. The MPS client then proceeds to connect to the server.

All communication between the MPS client, the MPS control daemon, and the MPS server is done
using named pipes and UNIX domain sockets. The MPS server launches a worker thread to receive
commands from the client. Successful client connection will be logged by theMPS server as the client
status becomesACTIVE. Upon client process exit, the server destroys any resources not explicitly freed
by the client process and terminates the worker thread. The client exit event will be logged by theMPS
server.

26 Chapter 6. Architecture

Chapter 7. Appendix: Tools and
Interface Reference

The following utility programs and environment variables are used to manage the MPS execution envi-
ronment. They are described below, along with other relevant pieces of the standard CUDA program-
ming environment.

7.1. Utilities and Daemons

7.1.1. nvidia-cuda-mps-control

Typically stored under∕usr∕bin on Linux andQNXsystems and typically runwith superuser privileges,
this control daemon is used to manage the nvidia-cuda-mps-server described in the following
section. These are the relevant use cases:

man nvidia-cuda-mps-control # Describes usage of this utility.

nvidia-cuda-mps-control -d # Start daemon in background process.

ps -ef | grep mps # Check if the MPS daemon is running, for Linux.

pidin | grep mps # See if the MPS daemon is running, for QNX.

echo quit | nvidia-cuda-mps-control # Shut the daemon down.

nvidia-cuda-mps-control -f # Start daemon in foreground.

nvidia-cuda-mps-control -v # Print version of control daemon executable�
↪→(applicable on Tegra platforms only).

The control daemon creates a nvidia-cuda-mps-control.pid file that contains the PID of the
control daemon process in the CUDA_MPS_PIPE_DIRECTORY. When there are multiple instances
of the control daemon running in parallel, one can target a specific instance by looking up its
PID in the corresponding CUDA_MPS_PIPE_DIRECTORY. If CUDA_MPS_PIPE_DIRECTORY is not set,
the nvidia-cuda-mps-control.pid file will be created at the default pipe directory at ∕tmp∕
nvidia-mps.

When used in interactive mode, the available commands are:

▶ get_server_list – prints out a list of all PIDs of server instances.

27

Multi-Process Service, Release r575

▶ get_server_status <PID> – this will print out the status of the server with the given <PID>.

▶ start_server - uid <user id> – manually starts a new instance of nvidia-cuda-mps-server
with the given user ID.

▶ get_client_list <PID> – lists the PIDs of client applications connected to a server instance
assigned to the given PID.

▶ quit – terminates the nvidia-cuda-mps-control daemon.

Commands available to Volta MPS control:

▶ get_device_client_list [<PID>] – lists the devices and PIDs of client applications that
enumerated this device. It optionally takes the server instance PID.

▶ set_default_active_thread_percentage <percentage> – overrides the default active
thread percentage for MPS servers. If there is already a server spawned, this command will only
affect the next server. The set value is lost if a quit command is executed. The default is 100.

▶ get_default_active_thread_percentage – queries the current default available thread per-
centage.

▶ set_active_thread_percentage <PID> <percentage> – overrides the active thread per-
centage for the MPS server instance of the given PID. All clients created with that server after-
wards will observe the new limit. Existing clients are not affected.

▶ get_active_thread_percentage <PID> – queries the current available thread percentage of
the MPS server instance of the given PID.

▶ set_default_device_pinned_mem_limit <dev> <value> – sets the default device pinned
memory limit for each MPS client. If there is already a server spawned, this command will only
affect the next server. The set value is lost if aquit command is executed. The dev argumentmay
be a device UUID string or an integer ordinal. The valuemust be in the form of an integer followed
by a qualifier, either “G” or “M” that specifies the value in Gigabyte or Megabyte respectively. For
example, to set a limit of 10 gigabytes for device 0, use the following command:

set_default_device_pinned_mem_limit 0 10G

By default, there is no memory limit set.

Note that for this command, the dev argument is not validated against available devices in the
MPS server. Therefore, it is possible to set two memory limits for the same device: one by device
UUID and another by ordinal. When an MPS server is started, whichever limit was set last will
take effect. A limit set with an invalid device UUID or ordinal will be ignored when starting the
MPS server.

▶ get_default_device_pinned_mem_limit <dev> – queries the current default pinned mem-
ory limit for the device. The dev argument may be device UUID string or an integer ordinal.

Note that this command does not translate between device UUIDs or ordinals and will return the
limit that was set for each device identifier via the set_default_device_pinned_mem_limit
command.

▶ set_device_pinned_mem_limit <PID> <dev> <value> - overrides the device pinned mem-
ory limit for MPS servers. This sets the device pinned memory limit for each client of MPS server
instance of the given PID for the device dev. All clients created with that server afterwards will
observe the new limit. Existing clients are not affected. The dev argument may be a device UUID
string or an integer ordinal. For example, to set a limit of 900MB for the server with pid 1024 for
device 0, use the following command:

set_device_pinned_mem_limit 1024 0 900M

28 Chapter 7. Appendix: Tools and Interface Reference

Multi-Process Service, Release r575

▶ get_device_pinned_mem_limit <PID> <dev> – queries the current device pinned memory
limit of the MPS server instance of the given PID for the device dev. The dev argument may be
a device UUID string or an integer ordinal.

▶ terminate_client <server PID> <client PID> – terminates all the outstanding GPUwork
of theMPS client process <client PID> running on theMPS server denoted by <server PID>.
For example, to terminate the outstanding GPU work for an MPS client process with PID 1024
running on an MPS server with PID 123, use the following command:

terminate_client 123 1024

▶ ps [-p PID] – reports a snapshot of the current client processes. It optionally takes the server
instance PID. It displays the PID, the unique identifier assigned by the server, the partial UUID of
the associated device, the PID of the connected server, the namespace PID, and the command
line of the client.

▶ set_default_client_priority [priority] – sets the default client priority that will be
used for new clients. The value is not applied to existing clients. Priority values should be consid-
ered as hints to the CUDA Driver, not guarantees. Allowed values are 0 [NORMAL] and 1 [BELOW
NORMAL]. The set value is lost if a quit command is executed. The default is 0 [NORMAL].

▶ get_default_client_priority – queries the current priority value that will be used for new
clients.

7.1.2. nvidia-cuda-mps-server

Typically stored under ∕usr∕bin on Linux and QNX systems, this daemon is run under the same $UID
as the client application running on the node. The nvidia-cuda-mps-server instances are created
on-demand when client applications connect to the control daemon. The server binary should not be
invoked directly, and instead the control daemon should be used tomanage the startup and shutdown
of servers.

The nvidia-cuda-mps-server process owns the CUDA context on the GPU and uses it to execute
GPU operations for its client application processes. Due to this, when querying active processes via
nvidia-smi (or any NVML-based application) nvidia-cuda-mps-server will appear as the active
CUDA process rather than any of the client processes.

The version of the nvidia-cuda-mps-server executable can be printed with:

nvidia-cuda-mps-server -v

7.1.3. nvidia-smi

Typically stored under ∕usr∕bin on Linux systems, this is used to configure GPUs on a node. The
following use cases are relevant to managing MPS:

man nvidia-smi # Describes usage of this utility.

nvidia-smi -L # List the GPU's on node.

nvidia-smi -q # List GPU state and configuration information.

nvidia-smi -q -d compute # Show the compute mode of each GPU.
(continues on next page)

7.1. Utilities and Daemons 29

Multi-Process Service, Release r575

(continued from previous page)

nvidia-smi -i 0 -c EXCLUSIVE_PROCESS # Set GPU 0 to exclusive mode, run as root.

nvidia-smi -i 0 -c DEFAULT # Set GPU 0 to default mode, run as root.�
↪→(SHARED_PROCESS)

nvidia-smi -i 0 -r # Reboot GPU 0 with the new setting.

7.2. Environment Variables

7.2.1. CUDA_VISIBLE_DEVICES

CUDA_VISIBLE_DEVICES is used to specify which GPU’s should be visible to a CUDA application. Only
the devices whose index or UUID is present in the sequence are visible to CUDA applications and they
are enumerated in the order of the sequence.

When CUDA_VISIBLE_DEVICES is set before launching the control daemon, the devices will be
remapped by the MPS server. This means that if your system has devices 0, 1 and 2, and if
CUDA_VISIBLE_DEVICES is set to 0,2, then when a client connects to the server it will see the
remapped devices – device 0 and a device 1. Therefore, keeping CUDA_VISIBLE_DEVICES set to 0,2
when launching the client would lead to an error.

The MPS control daemon will further filter-out any pre-Volta devices, if any visible device is Volta+.

To avoid this ambiguity, we recommend using UUIDs instead of indices. These can be viewed
by launching nvidia-smi -q. When launching the server, or the application, you can set
CUDA_VISIBLE_DEVICES to UUID_1,UUID_2, where UUID_1 and UUID_2 are the GPU UUIDs. It will
also work when you specify the first few characters of the UUID (including GPU-) rather than the full
UUID.

The MPS server will fail to start if incompatible devices are visible after the application of
CUDA_VISIBLE_DEVICES.

7.2.2. CUDA_MPS_PIPE_DIRECTORY

The MPS control daemon, the MPS server, and the associated MPS clients communicate with each
other via named pipes and UNIX domain sockets. The default directory for these pipes and sockets is
∕tmp∕nvidia-mps. The environment variable, CUDA_MPS_PIPE_DIRECTORY, can be used to override
the location of these pipes and sockets. The value of this environment variable should be consistent
across all MPS clients sharing the same MPS server, and the MPS control daemon.

The recommended location for the directory containing these named pipes and domain sockets is
local folders such as ∕tmp. If the specified location exists in a shared, multi-node filesystem, the path
must be unique for each node to prevent multiple MPS servers or MPS control daemons from using
the same pipes and sockets. When provisioning MPS on a per-user basis, the directory should be set
to a location such that different users will not end up using the same directory.

On Tegra platforms, there is no default directory setting for pipes and sockets. Users must set this
environment variable such that only intended users have access to this location.

30 Chapter 7. Appendix: Tools and Interface Reference

Multi-Process Service, Release r575

7.2.3. CUDA_MPS_LOG_DIRECTORY

The MPS control daemon maintains a control.log file which contains the status of its MPS servers,
user commands issued and their result, and startup and shutdown notices for the daemon. The MPS
server maintains a server.log file containing its startup and shutdown information and the status
of its clients.

By default these log files are stored in the directory ∕var∕log∕nvidia-mps. The
CUDA_MPS_LOG_DIRECTORY environment variable can be used to override the default value. This
environment variable should be set in the MPS control daemon’s environment and is automatically
inherited by any MPS servers launched by that control daemon.

On Tegra platforms, there is no default directory setting for storing the log files. MPS will remain
operational without the user setting this environment variable; however, in such instances, MPS logs
will not be available. If logs are required to be captured, then the user must set this environment
variable such that only intended users have access to this location.

7.2.4. CUDA_DEVICE_MAX_CONNECTIONS

When encountered in the MPS client’s environment, CUDA_DEVICE_MAX_CONNECTIONS sets the pre-
ferred number of compute and copy engine concurrent connections (work queues) from the host to
the device for that client. The number actually allocated by the driver may differ from what is re-
quested based on hardware resource limitations or other considerations. Under MPS, each server’s
clients share one pool of connections, whereas without MPS each CUDA context would be allocated
its own separate connection pool. Volta MPS clients exclusively owns the connections set aside for
the client in the shared pool, so setting this environment variable under Volta MPS may reduce the
number of available clients. The default value is 2 for Volta MPS clients.

7.2.5. CUDA_MPS_ACTIVE_THREAD_PERCENTAGE

On Volta GPUs, this environment variable sets the portion of the available threads that can be used by
the client contexts. The limit can be configured at different levels.

7.2.5.1 MPS Control Daemon Level

Setting this environment variable in an MPS control’s environment will configure the default active
thread percentage when the MPS control daemon starts.

All the MPS servers spawned by theMPS control daemon will observe this limit. Once theMPS control
daemon has started, changing this environment variable cannot affect the MPS servers.

7.2. Environment Variables 31

Multi-Process Service, Release r575

7.2.5.2 Client Process Level

Setting this environment variable in an MPS client’s environment will configure the active
thread percentage when the client process starts. The new limit will only further con-
strain the limit set by the control daemon (via set_default_active_thread_percentage or
set_active_thread_percentage control daemon commands or this environment variable at the
MPS control daemon level). If the control daemon has a lower setting, the control daemon setting will
be obeyed by the client process instead.

All the client CUDA contexts created within the client process will observe the new limit. Once the
client process has started, changing the value of this environment variable cannot affect the client
CUDA contexts.

7.2.5.3 Client CUDA Context Level

By default, configuring the active thread percentage at the client CUDA con-
text level is disabled. User must explicitly opt-in via environment variable
CUDA_MPS_ENABLE_PER_CTX_DEVICE_MULTIPROCESSOR_PARTITIONING. Refer to
CUDA_MPS_ENABLE_PER_CTX_DEVICE_MULTIPROCESSOR_PARTITIONING for more details.

Setting this environment variable within a client process will configure the active thread percentage
when creating a new client CUDA context. The new limit will only further constraint the limit set at
the control daemon level and the client process level. If the control daemon or the client process has a
lower setting, the lower setting will be obeyed by the client CUDA context instead. All the client CUDA
contexts created afterwardswill observe the new limit. Existing client CUDA contexts are not affected.

7.2.6. CUDA_MPS_ENABLE_PER_CTX_DEVICE_MULTIPROCESSOR_PARTITIONING

By default, users can only partition the available threads uniformly. An explicit opt-in via this envi-
ronment variable is required to enable non-uniform partitioning capability. To enable non-uniform
partitioning capability, this environment variable must be set before the client process starts.

When non-uniform partitioning capability is enabled in an MPS client’s environment, client CUDA
contexts can have different active thread percentages within the same client process via setting
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE before context creations. The device attribute cudaDe-
vAttrMultiProcessorCountwill reflect the active thread percentage and return the portion of avail-
able SMs that can be used by the client CUDA context current to the calling thread.

7.2.7. CUDA_MPS_PINNED_DEVICE_MEM_LIMIT

The pinned memory limit control limits the amount of GPU memory that is allocatable by CUDA
APIs by the client process. On Volta GPUs, this environment variable sets a limit on pinned de-
vice memory that can be allocated by the client contexts. Setting this environment variable
in an MPS client’s environment will set the device’s pinned memory limit when the client pro-
cess starts. The new limit will only further constrain the limit set by the control daemon (via
set_default_device_pinned_mem_limit or set_device_pinned_mem_limit control dae-
mon commands or this environment variable at the MPS control daemon level). If the control daemon
has a lower value, the control daemon setting will be obeyed by the client process instead. This envi-
ronment variable will have the same semantics as CUDA_VISIBLE_DEVICES i.e. the value string can

32 Chapter 7. Appendix: Tools and Interface Reference

Multi-Process Service, Release r575

contain comma-separated device ordinals and/or device UUIDswith per devicememory limit separated
by an equals. Example usage:

$ export CUDA_MPS_PINNED_DEVICE_MEM_LIMIT=''0=1G,1=512MB''

The following example highlights the hierarchy and usage of the MPS memory limiting functionality.

Set the default device pinned mem limit to 3G for device 0. The default limit�
↪→constrains the memory allocation limit of all the MPS clients of future MPS servers�
↪→to 3G on device 0.

$ nvidia-cuda-mps-control set_default_device_pinned_mem_limit 0 3G

Start daemon in background process

$ nvidia-cuda-mps-control -d

Set device pinned mem limit to 2G for device 0 for the server instance of the
given PID. All the MPS clients on this server will observe this new limit of 2G
instead of the default limit of 3G when allocating pinned device memory on device 0.
Note -- users are allowed to specify a server limit (via set_device_pinned_mem_
↪→limit)
greater than the default limit previously set by set_default_device_pinned_mem_
↪→limit.

$ nvidia-cuda-mps-control set_device_pinned_mem_limit <pid> 0 2G

Further constrain the device pinned mem limit for a particular MPS client to 1G for
device 0. This ensures the maximum amount of memory allocated by this client is�
↪→capped
at 1G.
Note - setting this environment variable to a value greater than value observed by�
↪→the
server for its clients (through set_default_device_pinned_mem_limit∕ set_device_
↪→pinned_mem_limit)
* will not set the limit to the higher value and thus will be ineffective and the�
↪→eventual
limit observed by the client will be that observed by the server.

$ export CUDA_MPS_DEVICE_MEM_LIMIT="0=1G"

7.2.8. CUDA_MPS_CLIENT_PRIORITY

The client priority level variable controls the initial default server value for the MPS Control Daemon
if used to launch that, or the client priority level value for a given client if used in a client launch. The
following examples demonstrate both usages.

Set the default client priority level for new servers and clients to Below Normal

$ export CUDA_MPS_CLIENT_PRIORITY=1

$ nvidia-cuda-mps-control -d

Set the client priority level for a single program to Normal without changing the�
↪→priority level for future clients

(continues on next page)

7.2. Environment Variables 33

Multi-Process Service, Release r575

(continued from previous page)

$ CUDA_MPS_CLIENT_PRIORITY=0 <program>

Note

CUDA priority levels are not guarantees of execution order – they are only a performance hint to
the CUDA driver.

7.3. MPS Logging Format

7.3.1. Control Log

Some of the example messages logged by the control daemon:

▶ Startup and shutdown of MPS servers identified by their process IDs and the user ID with which
they are being launched.

[2013-08-05 12:50:23.347 Control 13894] Starting new server 13929 for user
500

[2013-08-05 12:50:24.870 Control 13894] NEW SERVER 13929: Ready

[2013-08-05 13:02:26.226 Control 13894] Server 13929 exited with status 0

▶ New MPS client connections identified by the client process ID and the user ID of the user that
launched the client process.

[2013-08-05 13:02:10.866 Control 13894] NEW CLIENT 19276 from user 500:
Server already exists

[2013-08-05 13:02:10.961 Control 13894] Accepting connection...

▶ User commands issued to the control daemon and their result.

[2013-08-05 12:50:23.347 Control 13894] Starting new server 13929 for user
500

[2013-08-05 12:50:24.870 Control 13894] NEW SERVER 13929: Ready

▶ Error information such as failing to establish a connection with a client.

[2013-08-05 13:02:10.961 Control 13894] Accepting connection...

[2013-08-05 13:02:10.961 Control 13894] Unable to read new connection type
information

34 Chapter 7. Appendix: Tools and Interface Reference

Multi-Process Service, Release r575

7.3.2. Server Log

Some of the example messages logged by the MPS server:

▶ New MPS client connections and disconnections identified by the client process ID.

[2013-08-05 13:00:09.269 Server 13929] New client 14781 connected

[2013-08-05 13:00:09.270 Server 13929] Client 14777 disconnected

▶ Error information such as the MPS server failing to start due to system requirements not being
met.

[2013-08-06 10:51:31.706 Server 29489] MPS server failed to start

[2013-08-06 10:51:31.706 Server 29489] MPS is only supported on 64-bit Linux
platforms, with an SM 3.5 or higher GPU.

▶ Information about fatal GPU error containment on Volta+ MPS

[2022-04-28 15:56:07.410 Other 11570] Volta MPS: status of client {11661,
1} is ACTIVE

[2022-04-28 15:56:07.468 Other 11570] Volta MPS: status of client {11663,
1} is ACTIVE

[2022-04-28 15:56:07.518 Other 11570] Volta MPS: status of client {11643,
2} is ACTIVE

[2022-04-28 15:56:08.906 Other 11570] Volta MPS: Server is handling a fatal
GPU error.

[2022-04-28 15:56:08.906 Other 11570] Volta MPS: status of client {11641,
1} is INACTIVE

[2022-04-28 15:56:08.906 Other 11570] Volta MPS: status of client {11643,
1} is INACTIVE

[2022-04-28 15:56:08.906 Other 11570] Volta MPS: status of client {11643,
2} is INACTIVE

[2022-04-28 15:56:08.906 Other 11570] Volta MPS: The following devices

[2022-04-28 15:56:08.906 Other 11570] 0

[2022-04-28 15:56:08.907 Other 11570] 1

[2022-04-28 15:56:08.907 Other 11570] Volta MPS: The following clients have
a sticky error set:

[2022-04-28 15:56:08.907 Other 11570] 11641

[2022-04-28 15:56:08.907 Other 11570] 11643

[2022-04-28 15:56:09.200 Other 11570] Client {11641, 1} exit

[2022-04-28 15:56:09.244 Other 11570] Client {11643, 1} exit

[2022-04-28 15:56:09.244 Other 11570] Client {11643, 2} exit

[2022-04-28 15:56:09.245 Other 11570] Volta MPS: Destroy server context on
device 0

[2022-04-28 15:56:09.269 Other 11570] Volta MPS: Destroy server context on
device 1

7.3. MPS Logging Format 35

Multi-Process Service, Release r575

[2022-04-28 15:56:10.310 Other 11570] Volta MPS: Creating server context on
device 0

[2022-04-28 15:56:10.397 Other 11570] Volta MPS: Creating server context on
device 1

7.4. MPS Known Issues

▶ Clients may fail to start, returning ERROR_OUT_OF_MEMORY when the first CUDA context is cre-
ated, even though there are fewer client contexts than the hard limit of 16.

Comments: When creating a context, the client tries to reserve virtual address space for the
Unified Virtual Addressing memory range. On certain systems, this can clash with the system
linker and the dynamic shared libraries loaded by it. Ensure that CUDA initialization (for example,
cuInit() or any cuda*() Runtime API function) is one of the first functions called in your code.
To provide a hint to the linker and to the Linux kernel that you want your dynamic shared libraries
higher up in the VA space (where it won’t clash with CUDA’s UVA range), compile your code as PIC
(Position Independent Code) and PIE (Position Independent Executable). Refer to your compiler
manual for instructions on how to achieve this.

▶ Memory allocation API calls (including context creation) may fail with the following message in
the server log: MPS Server failed to create/open SHM segment.

Comments: This is most likely due to exhausting the file descriptor limit on your system. Check
the maximum number of open file descriptors allowed on your system and increase if necessary.
We recommend setting it to 16384 and higher. Typically this information can be checked via the
command ulimit -n; refer to your operating system instructions on how to change the limit.

36 Chapter 7. Appendix: Tools and Interface Reference

Chapter 8. Appendix: Common Tasks

The convention for using MPS will vary between system environments. The Cray environment, for
example, managesMPS in away that is almost invisible to the user, whereas other Linux-based systems
may require the user to manage activating the control daemon themselves. As a user you will need to
understand which set of conventions is appropriate for the system you are running on. Some cases
are described in this section.

8.1. Starting and Stopping MPS on Linux

8.1.1. On a Multi-user System

To cause all users of the system to run CUDA applications via MPS you will need to set up the MPS
control daemon to run when the system starts.

8.1.1.1 Starting MPS control daemon

As root, run the commands:

export CUDA_VISIBLE_DEVICES=0 # Select GPU 0.

nvidia-smi -i 0 -c EXCLUSIVE_PROCESS # Set GPU 0 to exclusive mode.

nvidia-cuda-mps-control -d # Start the daemon.

Thiswill start theMPS control daemon thatwill spawn a newMPSServer instance for any $UID starting
an application and associate it with the GPU visible to the control daemon. Only one instance of the
nvidia-cuda-mps-control daemon should be run per node. Note that CUDA_VISIBLE_DEVICES
should not be set in the client process’s environment.

37

Multi-Process Service, Release r575

8.1.1.2 Shutting Down MPS Control Daemon

To shut down the daemon, as root, run:

echo quit | nvidia-cuda-mps-control

8.1.1.3 Log Files

You can view the status of the daemons by viewing the log files in

∕var∕log∕nvidia-mps∕control.log

∕var∕log∕nvidia-mps∕server.log

These are typically only visible to users with administrative privileges.

8.1.2. On a Single-User System

When running as a single user, the control daemon must be launched with the same user ID as that of
the client process.

8.1.2.1 Starting MPS Control Daemon

As $UID, run the commands:

export CUDA_VISIBLE_DEVICES=0 # Select GPU 0.

export CUDA_MPS_PIPE_DIRECTORY=∕tmp∕nvidia-mps # Select a location that's ac-
cessible to the given $UID

export CUDA_MPS_LOG_DIRECTORY=∕tmp∕nvidia-log # Select a location that's acces-
sible to the given $UID

nvidia-cuda-mps-control -d # Start the daemon.

This will start the MPS control daemon that will spawn a newMPS Server instance for that $UID start-
ing an application and associate it with GPU visible to the control daemon.

8.1.2.2 Starting MPS client application

Set the following variables in the client process’s environment. Note that CUDA_VISIBLE_DEVICES
should not be set in the client’s environment.

export CUDA_MPS_PIPE_DIRECTORY=∕tmp∕nvidia-mps # Set to the same location as
the MPS control daemon

export CUDA_MPS_LOG_DIRECTORY=∕tmp∕nvidia-log # Set to the same location as the
MPS control daemon

38 Chapter 8. Appendix: Common Tasks

Multi-Process Service, Release r575

8.1.2.3 Shutting Down MPS

To shut down the daemon, as $UID, run:

echo quit | nvidia-cuda-mps-control

8.1.2.4 Log Files

You can view the status of the daemons by viewing the log files in

$CUDA_MPS_LOG_DIRECTORY∕control.log

$CUDA_MPS_LOG_DIRECTORY∕server.log

8.1.3. Scripting a Batch Queuing System

8.1.3.1 Basic Principles

Chapters 3 and 4 describe theMPS components, software utilities, and the environment variables that
control them. However, using MPS at this level puts a burden on the user since:

1. At the application level, the user only cares whether MPS is engaged or not, and should not have
to understand the details of environment settings and so on when they are unlikely to deviate
from a fixed configuration.

2. There may be consistency conditions that need to be enforced by the system itself, such as
clearing CPU- and GPU- memory between application runs, or deleting zombie processes upon
job completion.

3. Root-access (or equivalent) is required to change the mode of the GPU.

We recommend youmanage these details by building some sort of automatic provisioning abstraction
on top of the basic MPS components. This section discusses how to implement a batch-submission
flag in the PBS/Torque queuing environment and discusses MPS integration into a batch queuing sys-
tem in general.

8.1.3.2 Per-Job MPS Control: A Torque/PBS Example

Note

Torque installations are highly customized. Conventions for specifying job resources vary from site
to site and we expect that, analogously, the convention for enabling MPS could vary from site to
site as well. Check with your system’s administrator to find out if they already have a means to
provision MPS on your behalf.

Tinkering with nodes outside the queuing convention is generally discouraged since jobs are usually
dispatched as nodes are released by completing jobs. It is possible to enable MPS on a per-job basis
by using the Torque prologue and epilogue scripts to start and stop the nvidia-cuda-mps-control
daemon. In this example, we re-use the account parameter to request MPS for a job, so that the
following command:

8.1. Starting and Stopping MPS on Linux 39

Multi-Process Service, Release r575

qsub -A "MPS=true" ...

will result in the prologue script starting MPS as shown:

Activate MPS if requested by user

USER=$2
ACCTSTR=$7
echo $ACCTSTR | grep -i "MPS=true"
if [$? -eq 0]; then

nvidia-smi -c 3
USERID=`id -u $USER`
export CUDA_VISIBLE_DEVICES=0
nvidia-cuda-mps-control -d && echo "MPS control daemon started"
sleep 1
echo "start_server -uid $USERID" | nvidia-cuda-mps-control && echo "MPS server�

↪→started for $USER"
fi

and the epilogue script stopping MPS as shown:

Reset compute mode to default
nvidia-smi -c 0

Quit cuda MPS if it's running
ps aux | grep nvidia-cuda-mps-control | grep -v grep > ∕dev∕null
if [$? -eq 0]; then

echo quit | nvidia-cuda-mps-control
fi

Test for presence of MPS zombie
ps aux | grep nvidia-cuda-mps | grep -v grep > ∕dev∕null
if [$? -eq 0]; then

logger "`hostname` epilogue: MPS refused to quit! Marking offline"
pbsnodes -o -N "Epilogue check: MPS did not quit" `hostname`

fi

Check GPU sanity, simple check
nvidia-smi > ∕dev∕null
if [$? -ne 0]; then

logger "`hostname` epilogue: GPUs not sane! Marking `hostname` offline"
pbsnodes -o -N "Epilogue check: nvidia-smi failed" `hostname`

fi

8.2. Best Practice for SM Partitioning

Creating a context is a costly operation in terms of time, memory, and the hardware resources.

If a context with execution affinity is created at kernel launch time, the user will observe a sudden in-
crease in latency andmemory footprint as a result of the context creation. To avoid paying the latency
of context creation and the abrupt increase inmemory usage at kernel launch time, it is recommended
that users create a pool of contexts with different SM partitions upfront and select context with the
suitable SM partition on kernel launch:

40 Chapter 8. Appendix: Common Tasks

Multi-Process Service, Release r575

int device = 0;
cudaDeviceProp prop;
const Int CONTEXT_POOL_SIZE = 4;
CUcontext contextPool[CONTEXT_POOL_SIZE];
int smCounts[CONTEXT_POOL_SIZE];
cudaSetDevice(device);
cudaGetDeviceProperties(&prop, device);
smCounts[0] = 1; smCounts[1] = 2;
smCounts[3] = (prop. multiProcessorCount - 3) ∕ 3;
smCounts[4] = (prop. multiProcessorCount - 3) ∕ 3 * 2;
for (int i = 0; i < CONTEXT_POOL_SIZE; i++) {

CUexecAffinityParam affinity;
affinity.type = CU_EXEC_AFFINITY_TYPE_SM_COUNT;
affinity.param.smCount.val = smCounts[i];
cuCtxCreate_v3(&contextPool[i], affinity, 1, 0, deviceOrdinal);

}

for (int i = 0; i < CONTEXT_POOL_SIZE; i++) {
std::thread([i]() {

int numSms = 0;
int numBlocksPerSm = 0;
int numThreads = 128;
CUexecAffinityParam affinity;
cuCtxSetCurrent(contextPool[i]);
cuCtxGetExecAffinity(&affinity, CU_EXEC_AFFINITY_TYPE_SM_COUNT);
numSms = affinity.param.smCount.val;
cudaOccupancyMaxActiveBlocksPerMultiprocessor(

&numBlocksPerSm, kernel, numThreads, 0);
void *kernelArgs[] = { ∕* add kernel args *∕ };

dim3 dimBlock(numThreads, 1, 1);
dim3 dimGrid(numSms * numBlocksPerSm, 1, 1);
cudaLaunchCooperativeKernel((void*)my_kernel, dimGrid, dimBlock, kernelArgs);

};
}

The hardware resources needed for client CUDA contexts is limited and support up to 48 client CUDA
contexts per-device on Volta MPS. The size of the context pool per-device is limited by the number of
CUDA client contexts supported per-device. The memory footprint of each client CUDA context and
the value of CUDA_DEVICE_MAX_CONNECTIONS may further reduce the number of available clients.
Therefore, CUDA client contexts with different SM partitions should be created judiciously.

8.3. Troubleshooting Guide

8.3.1. MPS Server Not Accepting New Client Requests

Description This error indicates that the MPS (Multi-Process Service) server is currently unable to
accept new client connections. This is typically a temporary condition caused by one of the following
known issues.

Possible Causes and Recommended Actions Server Recovery or Automatic Restart

Cause: The MPS server is recovering from a previous error or automatically restarting due to a kernel-

8.3. Troubleshooting Guide 41

Multi-Process Service, Release r575

level application failure.

Action: Wait for the server to complete its recovery. If these errors occur repeatedly, investigate the
client application for underlying issues.

Server Initialization in Progress

Cause: The server is performing initialization operations equivalent to cuInit() --> cuCtxCre-
ate(). On systemswithmultiple GPUs and no persistence daemon, this can take a significant amount
of time. Any client connections attempted during this period will receive this error.

Action: Allow the initialization to complete. To speed up future startups, consider enabling the NVIDIA
Persistence Daemon.

Client Termination Cleanup

Cause: A terminate_client operation is in progress. During this time, the server restricts new con-
nections to clean up resources from a specific client.

Action: Wait for the cleanup process to finish. This does not affect other connected clients.

User ID Mismatch Without Multi-User Mode

Cause: A client with a different user ID is attempting to connect while the server is not started with
the -multi-user flag.

Action: Either start the MPS server with the -multi-user option or ensure that clients are using the
same user ID. The default MPS behavior is to restart the server for each unique user ID.

42 Chapter 8. Appendix: Common Tasks

Chapter 9. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

43

Multi-Process Service, Release r575

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

9.1. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2013-2025, NVIDIA Corporation & affiliates. All rights reserved

44 Chapter 9. Notices

